본문 바로가기

전체 글

(187)
머신러닝이란? 머신러닝의 기본 개념과 적용 사례 알아보기 인공 지능의 핵심 요소 머신러닝은 인공 지능(AI)의 중요한 분야로, 컴퓨터가 데이터를 통해 학습하고, 스스로 예측하거나 결정을 내릴 수 있도록 하는 기술이다. 이는 데이터 과학, 통계, 컴퓨터 과학의 교차점에 위치하며, 현대 기술 환경에서 필수적인 역할을 한다. 머신러닝의 기본 개념 머신러닝은 알고리즘과 통계적 모델을 사용하여 컴퓨터가 특정 작업을 수행하도록 학습시키는 과정이다. 이 과정에서 명시적인 프로그래밍 없이도 패턴을 인식하고, 결정을 내릴 수 있다. 지도 학습(Supervised Learning): 레이블이 지정된 데이터를 사용하여 모델을 훈련시키고, 새로운 데이터에 대한 예측을 수행한다. 비지도 학습(Unsupervised Learning): 레이블이 없는 데이터를 사용하여 데이터의 숨겨진 ..
데이터 관련 직무: 데이터 분석가, 데이터 엔지니어, 데이터 사이언티스트 데이터는 현대 비즈니스의 핵심 자원이 되었다. 이에 따라 데이터 관련 직무가 중요성을 더하고 있으며, 특히 데이터 분석가, 데이터 엔지니어, 데이터 사이언티스트는 이 분야의 핵심 직무로 부상했다. 데이터 분석가: 정보의 통찰력을 제공하는 전문가 데이터 분석가는 비즈니스 데이터를 수집, 처리, 분석하여 의미 있는 인사이트를 도출하는 역할을 한다. 이들은 주로 통계적 방법과 분석 도구를 사용하여 데이터를 해석하고, 이를 바탕으로 비즈니스 전략을 제안한다. 주요 업무: 데이터 수집 및 정제, 통계적 분석, 보고서 작성 필요 기술: SQL, Excel, R 또는 Python, 데이터 시각화 도구 적용 분야: 시장 분석, 고객 행동 분석, 성과 측정 데이터 엔지니어: 데이터 아키텍처의 설계자 데이터 엔지니어는 데..
데이터 분석의 필요성과 적용 사례는 어떤 것이 있을까? 데이터 분석은 왜 필요한가? 현대 비즈니스 환경에서 데이터는 가장 중요한 자산 중 하나다. 기업들은 매일 엄청난 양의 데이터를 생성하고 수집한다. 이 데이터를 효과적으로 분석하고 활용하는 능력은 기업이 경쟁에서 우위를 차지하는 데 결정적인 역할을 하고 있다. 데이터 분석의 중요성 데이터 분석은 대규모 데이터 세트에서 유의미한 정보를 추출하고, 이를 통해 패턴을 식별하고, 예측을 수행하며, 전략적 결정을 내리는 과정이다. 이 과정은 다음과 같은 이유로 중요하다: 정보 기반 의사결정: 데이터 분석은 추측이나 직관에 의존하는 대신 실질적인 데이터에 기반한 의사결정을 가능하게 하는데, 이는 리스크를 최소화하고 ROI를 극대화하는 데 도움이 된다. 고객 인사이트 향상: 고객 데이터 분석을 통해 소비자 행동, 선호..
상관도 분석에 사용되는 방법: 피어슨/스피어만 순위/켄달 순위 상관계수 상관도 분석의 중요성상관도 분석은 데이터 과학, 통계학, 사회과학 등 다양한 분야에서 중요한 도구이다. 이 분석을 통해 우리는 두 변수 간의 관계를 이해하고, 이를 바탕으로 더 복잡한 분석이나 예측 모델을 구축할 수 있다. 상관 분석은 변수들 사이의 연관성을 파악하고, 이를 통해 데이터에 숨겨진 패턴과 인사이트를 발견하는 데 중요한 역할을 한다. 상관 분석의 정의 및 방법상관 분석은 두 변수 간의 관계의 강도와 방향을 측정하는 통계적 방법이다. 이는 변수들 사이의 선형적 또는 비선형적 관계를 파악하는 데 사용된다. 이러한 분석을 수행하기 위해 주로 사용되는 세 가지 기법이 있다: 피어슨 상관 계수, 스피어만 순위 상관 계수, 그리고 켄달 순위 상관 계수. 각각의 방법은 데이터의 특성과 분석 목적에 따라 ..
논문/저널 IF(Impact Factor) 점수 확인하는 법 논문이나 학술 저널의 품질을 평가하는 데 있어서 '임팩트 팩터(Impact Factor, IF)'는 중요한 지표 중 하나다. IF 점수는 특정 학술 저널에 실린 논문들이 특정 기간 동안 얼마나 자주 인용되었는지를 나타내는 수치로, 저널의 영향력을 반영한다. 이 점수가 높을수록 해당 저널에 실린 논문들이 학계에서 더 많은 주목을 받고 있다고 볼 수 있다. Journal Citation Reports (JCR) Journal Citation Reports jcr.clarivate.com
모델예측제어(MPC)와 cvxpy를 이용한 구현 방법 MPC란? 모델 예측 제어(Model Predictive Control, MPC)는 고급 제어 전략 중 하나로, 미래의 예측을 기반으로 현재의 제어 입력을 최적화한다. 이 블로그 글에서는 Python의 cvxpy 라이브러리를 사용하여 MPC를 구현하는 방법을 소개한다. MPC는 미래의 출력을 예측하고, 이를 바탕으로 최적의 제어 입력을 계산한다. 이 과정은 시스템의 현재 상태를 시작점으로 하여, 미래의 특정 시간 동안의 최적 경로를 계산하는 것을 포함한다. cvxpy 소개 cvxpy는 복잡한 최적화 문제를 쉽게 해결할 수 있도록 도와주는 Python 라이브러리이다. 선형 및 비선형 문제, 제약 조건이 있는 문제 등 다양한 유형의 최적화 문제를 해결할 수 있다. cvxpy를 이용한 mpc 구현 MPC를 구..
주식과 코인 투자에서 활용되는 기술적 지표와 주요 보조 지표 기술적 분석은 주식이나 코인과 같은 금융 자산의 차트와 거래 데이터를 분석하여 미래의 가격 움직임을 예측하는 방법이다. 이 분석법에서는 다양한 보조지표들을 활용하는데, 이들은 크게 추세 지표, 모멘텀 지표, 변동성 지표, 거래량 지표로 나뉜다. 각각의 분류에 대해 자세히 알아보자. 1. 추세 지표 (Trend Indicators) 추세 지표는 시장의 방향성을 파악하는 데 사용된다. 이 지표들은 현재의 추세가 어떤 방향으로 진행되고 있는지, 그리고 그 강도는 어느 정도인지를 나타내는 데 사용된다. 대표적인 추세 지표: 이동 평균 (Moving Averages) 시장의 평균 가격을 일정 기간 동안 평활화하여 추세를 파악한다. 추세의 방향을 파악하고, 지지 및 저항 수준을 식별하는 데 사용된다. 이동 평균 수..
골든크로스와 데드크로스: 주식과 코인 시장의 중요 신호 주식 투자에서 성공적인 결정을 내리기 위해서는 다양한 기술적 분석 도구를 이해하고 활용하는 것이 중요하다. 그 중에서도 '골든크로스'와 '데드 크로스'는 특히 중요한 개념으로 자리잡고 있는데, 오늘은 이 두 용어의 의미와 그들이 시장에서 어떻게 활용되는지에 대해 알아본다. 골든크로스란? 골든크로스는 장기 이동 평균선이 단기 이동 평균선을 아래에서 위로 교차할 때 발생한다. 이는 일반적으로 상승 추세의 시작을 나타내며, 많은 투자자들에게 매수 신호로 해석된다. 예시: 50일 이동 평균선이 200일 이동 평균선을 상향 돌파하는 경우 데드 크로스란? 데드 크로스는 골든크로스의 반대 상황이다. 이는 단기 이동 평균선이 장기 이동 평균선을 위에서 아래로 교차할 때 발생하며, 하락 추세의 시작을 나타낸다. 이는 많..